PCT/JP2017/024494].	セルロース系粘性組	成物及びその製造ス	方法、並びにその用途		180512 FCC 6/8改
 請求項No					第一選択権の想定	
1 CMCHと重炭酸塩との酒 前駆体組成物	昆合組成物	貯蔵、移送しやすい 形態、脱石油化学用 の工業素材	まず最高純度既存品	品から出発	紙パルプ事業	
2 <mark>硫酸水処理によるCMCI</mark>	Hの製法	カルボキシセルロース	- スCaCe®アルカリ中和	塩型のからの製法	純水処理、硫酸の扱	い技術及び装置
オキソ酸利用が上位	z概念 =	各種バイオマス資源の	の活用	草木、麻、綿、竹、ワ	ラ、ガラ等の利用	フィラー効果の活用
	4	モノクロ酢酸 塩の漬物	pH調整※1にて、エ	ーテル化	酢漬け、塩漬け、浅漬	け、古漬け、備蓄資源
			- 季節的特産物、	大陸漬、南洋漬、万葉汽	責、白川漬、⇒ 空調	国室で通年仕込
		このほかのCaCe®	酸無水物の高圧混鉱	東	新機材の導入	大量生産に期待
			TEMPO酸化型CNF	1級水酸基の直接酸化	特許上の競合	特殊用途に期待
				•	-	
3 重炭酸アンモニウム塩	富の特定	耐水架橋硬化による両	耐水性発現	Naイオン根絶の水処理	. **2	化学工業の新素材
3 重炭酸アンモニウム塩	-	耐水架橋硬化によるm 重曹の利用:水可溶 の			! ※2 大量需要の食品, 飼	
3 重炭酸アンモニウム塩	-					
3 重炭酸アンモニウム塩 4 高濃度の含水構造; 顆]	重曹の利用:水可溶の	の糊、食物繊維機能食品。	としての新形態(別途解説)		
	類粒の特定 第	重曹の利用:水可溶の 新形態の含水顆粒	の糊、食物繊維機能食品。 セルロースナノチ:	としての新形態(別途解説)	大量需要の食品,飼	料関連に新展開
	類粒の特定 第	重曹の利用:水可溶の 新形態の含水顆粒	の糊、食物繊維機能食品。 セルロースナノチ:	としての新形態(別途解説) ューブ CeNT®	大量需要の食品,飼 電顕等の観察器機	料関連に新展開
	質粒の特定	重曹の利用:水可溶の 新形態の含水顆粒 管壁の構造解析(硫酸	の糊、食物繊維機能食品。 セルロースナノチ:	としての新形態(別途解説) ューブ CeNT®	大量需要の食品,飼 電顕等の観察器機	料関連に新展開
4 高濃度の含水構造; 顆	類粒の特定 対 対 対 対 対 対 対 対 対 対 対 対 対 対 対 対 対 対 対	重曹の利用:水可溶の 新形態の含水顆粒 管壁の構造解析(硫酸	の糊、食物繊維機能食品。セルロースナノチョウル型スルホン化疎水	としての新形態(別途解説) ューブ CeNT®	大量需要の食品,飼 電顕等の観察器機	料関連に新展開
4 高濃度の含水構造; 顆 5 多価アルコール、油脂	質粒の特定 素	重曹の利用:水可溶の 新形態の含水顆粒 管壁の構造解析(硫酸 グリコール	の糊、食物繊維機能食品。セルロースナノチェ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	としての新形態(別途解説) ューブ CeNT® 化と推測)⇒	大量需要の食品,飼 電顕等の観察器機 セルロース科学の発	料関連に新展開
4 高濃度の含水構造; 顆 5 多価アルコール、油脂	質粒の特定	重曹の利用:水可溶の 新形態の含水顆粒管壁の構造解析(硫酸 グリコール グリセリン	の糊、食物繊維機能食品。 セルロースナノチュ 処理スルホン化疎水 二価 三価 多価	としての新形態(別途解説) ューブ CeNT® 化と推測)⇒ ゴム様柔軟性	大量需要の食品,飼 電顕等の観察器機 セルロース科学の発	料関連に新展開展

6	顔料、	粒子	-,	炭素粒子の)混和
	両親	媒、	界	面活性剤、	分散剤

光学、着色色彩、 光学、蛍光、蓄光、波長変換 電気伝導、金属、 炭素 CNT

塗料事業の固有技術

7	炭素繊維布に塗布、	電流検知
- 1		电闭几伊人时

- 8 金属空気電池
- 9 電池の直列連結
- 10 プロトン酸給液の電池
- 11 電池、その部材

CaCe®の機能検定 電池組み立て事業

品質管理手段

既存事業社との連携

電力平準化事業

特にセパレーターの改質 炭素電極事業

12 塗布した炭素繊維、布

サイジング、収束剤

繊維事業

13 ミリサイズ厚さの塗料

|14||ミクロン、ナノサイズ厚み

15 表面処理剤

垂れない、沸かない 皮張りしない

垂れない、沸かない

薄い被覆

りしない 膨大な一般塗料市場

高機能塗料/インキ

親水、防錆機能(欠損の無い薄膜)

塗料事業

特殊、高機能塗料

表面処理事業

16 架橋硬化させた固体電解質

分子間で水酸基とカルボキシ基の脱水縮合

CaCe®の特徴

各種の電池事業、

|17|||卑金属板に塗布した電池電極

アルミ金属空気電池

理想的1次電池

※1; pH調整と攪拌のノウハウ、セルロース固有の繊維長の維持、結晶性の維持、選択採取、排水処理が核心技術

※2:溶解、膜剥離、腐食要因になるアルカリ金属イオン(Li. Na. K)濃度管理、残留防止が核心技術